Kinetics of proteolytic reactions in nanoporous materials.
نویسندگان
چکیده
Proteolysis with proteases preloaded within nanopores of porous material is a very fast process, where proteins can be digested in minutes compared to the conventional bulk enzyme reactions taking place over hours. To model this surprising phenomenon, a modified sequential proteolytic mechanism has been developed to simulate the kinetics of the reaction. Digestion of myoglobin was used as an example to show the high efficiency of the in-nanopore enzymatic reaction, while angiotensin 1 and ACTH (1-14) were selected as model peptides to validate the theoretical considerations. The proteolytic peptides were quantified by capillary electrophoresis and sequenced by mass spectrometry using bottom-up strategy. The simulation clearly shows that the major factor for the very fast digestion kinetics observed stems from a peptide confinement effect, where the generated peptides are trapped within a confined space for further proteolysis to the final products. On the other hand, the ingress and diffusion of the proteins into the porous cavity can accelerate or limit the first proteolytic step requiring the encounter between the substrates and enzymes. The present model can be widely applied to different enzyme catalyzed reactions for high-throughput protein profiling, and can promote the study of enzyme reactions occurring inside the cell.
منابع مشابه
ToF-SIMS studies of nanoporous PMSSQ materials: kinetics and reactions in the processing of low-K dielectrics for ULSI applications
Detailed investigations of spin-on polymethylsilsesquioxane (PMSSQ)-based low-K materials were carried out by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to identify the reaction kinetics and mechanisms occurring during the manufacturing of nanoporous dielectrics for ULSI applications. Analysis of the static SIMS fingerprints led to the identification of key species relat...
متن کاملEnhanced electrochemical reactions of 1,4-benzoquinone at nanoporous electrodes.
We report that the proton-coupled electron transfer kinetics of 1,4-benzoquinone was significantly enhanced in electrified nanopores in aqueous media. At nanoporous Pt and Au electrodes, the voltammetric behaviour of 1,4-benzoquinone at nanoporous electrodes was clearly distinct from that at flat surfaces. Proton transfer as well as electron transfer kinetics were facilitated in the nanopores b...
متن کاملMulti-Functionalization of Nanoporous Catalytic Materials to Enhance Reaction Yield: Statistical Mechanical Modeling for Conversion Reactions with Restricted Diffusive Transport
Multi-functionalization of catalytically-active nanomaterials provides a valuable tool for enhancing reaction yield by shifting reaction equilibrium, and potentially also by adjusting reaction-diffusion kinetics. For example, multi-functionalization of mesoporous silica to make the interior pore surface hydrophobic can enhance yield in dehydration reactions. Detailed molecular-level modeling to...
متن کاملComputer Simulation of Chemical Reactions in Porous Materials
TURNER, CHRISTOFFER HEATH. Computer Simulation of Chemical Reactions in Porous Materials. (Under the direction of Keith E. Gubbins.) Understanding reactions in nanoporous materials from a purely experimental perspective is a difficult task. Measuring the chemical composition of a reacting system within a catalytic material is usually only accomplished through indirect methods, and it is usually...
متن کاملMolecular release from patterned nanoporous gold thin films.
Nanostructured materials have shown significant potential for biomedical applications that require high loading capacity and controlled release of drugs. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising novel material that benefits from compatibility with microfabrication, tunable pore morphology, electrical conductivity, well-established gold-thiol conjugate chem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of proteome research
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2009